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1. INTRODUCTION
As scientific clusters are steadily growing, energy con-

sumption is also growing as a problem. We can see power
consumption well above 10 MW in today’s top supercom-
puters.[4] Literature on energy awareness on smaller scales
have helped address energy consumption and efficiency, and
tools such as dynamic voltage and frequency scaling (DVFS)
have helped increase energy efficiency.[2] However, energy
consumption on petascale systems has only been addressed
within the most recent decade. Within the past few years,
energy measurement tools have been tested on supercom-
puters.[1, 5]

Discovering system resource usage patterns in clusters have
been increasingly harder to find. As clusters grow, there is
an increase in the volumes of data, number of machines,
and exploited parallelism. This has produced increasing
interactions of hardware components within clusters. Our
work is motivated by observations that discovering system
resource usage patterns can be conducted from monitored
performance measurements from scientific clusters.

2. METHODS
Data was gathered on Cori, a supercomputer at Lawrence

Berkeley National Laboratory. It has 1630 compute nodes
with 32 physical cores per node, and each node has 128
GB of memory. Users submit jobs to Cori, and jobs are
broken down into jobsteps. For our plots, points represent
individual jobsteps for the month of May 2016.

We took two paths in analyzing the data. One path we
took was to aggregate the job steps so that we had tuples of
job characteristic values that corresponded to unique jobs.
In doing this preprocessing, we are able to detect patterns
on a per-job resolution. Another approach we took was not
aggregating the job steps and instead creating tuples of job
characteristic. In analyzing the data on a finer resolution,
we can create analyses and detect patterns on specific parts
of jobs, which is the path we took.

We also implemented an interactive plot viewer to help
find pattern detections. The features include annotations,
coloring based on threshold values of characteristics, and
lassoing. One can use the annotations to look at specific
points on the plots and read their job characteristics. Col-
orings based on threshold values can be used to see trends in
job characteristics by partitioning the graph into two groups
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Figure 1: Energy/# of nodes vs. Elapsed time. For
all plots, CPU and Elapsed time are measured in
seconds.

based on the threshold. Lassoing lets one draw around a re-
gion and select jobs within the region for further analysis.

3. RESULTS
In figure 1, we can see that there are several trends formed

by several lines. Each line corresponds to different values of
cores/node, where the most prominent line has the largest
cores/node value of 32. What this tells us is that for similar
CPU times per node, we can see different amounts of energy
output per node. In Figure 2, for similar cpu loads, there
are large spreads of watts per node. In other words, we have
different power consumption for similar CPU business.

In Figure 3, we identified clusters of energy consumption
from the same application which use the same number of
nodes using the interactive plot. They show different pat-
terns depending on CPU utilization, memory usage, and
number of CPUs. When memory usage is low as in the red
and blue clusters, the watts per node increases with CPU



0 10 20 30 40 50 60 70
CPU Time/Elapsed Time/# of nodes

0

50

100

150

200

250

300

350

400

450
W

a
tt

s
 p

e
r 

n
o
d
e

Watts per node vs. CPU Load

Figure 2: Watts per node vs. CPU Time/Elapsed
Time/# of nodes

time/ Elapsed time (CPU utilization). Memory usage is
higher in the purple cluster, and when memory usage is high,
watts per node does not increase even with an increase in
CPU utilization. This results from contention on the mem-
ory subsystem (shared cache and memory bandwidth). It
follows that the purple region’s executions are inefficiently
executed and show higher elapsed time and CPU time. As a
result, we believe that the number of CPUs per node needs
to be decreased for high memory usage jobs executions in
order to avoid contention. Our results show that assigning
the proper number of CPUs per node is crucial for energy
consumption.

4. CONCLUSION
In this summary, we have shown energy usage patterns on

NERSC’s supercomputer Cori. By analyzing SLURM logs
and applying tools such as Apache Spark and Python, we
were able to develop different methods for finding energy
usage patterns. We developed an interactive plotting tool
that is able to find energy usage patterns. Using the tool,
we identified the assigned number of CPUs per node can
change the energy usage pattern from the same application.
As future work, we will investigate how to increase energy
efficiency by optimizing the number of CPUs per node de-
pending on the resource usage patterns of job executions.
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Figure 3: Clusters found from Figure 2 from the
same application using 80 nodes. Colored based on
CPU/# of nodes for values of 1, 12, and 32 from
left to right respectively. Memory usage is highest
in the purple region.
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